EPIDEMIOLOGICAL DATA INTEGRATION, ANALYSIS AND VISUALIZATION : FROM DATABASES TO POPULATION GENETICS

João André Carriço

www.joaocarrico.info

Microbial Typing methods

Crude classifications and false generalizations are the curse of organized life.

George Bernard Shaw (1856 - 1950)

All science is either physics or stamp collecting.

Ernest Rutherford, in J. B. Birks "Rutherford at Manchester" (1962)

Evolution of typing methods

Phenotypic

- Growth and morphological characteristics
- Physiological characteristics: Antibiotic susceptibility testing
- Serotyping

Genotypic (Molecular)

- Extrachromossomal: Plasmid fingerprinting
- Cromossomal: RFLP/ PFGE

Genotypic (Sequence-based)

- MLST
- MLVA
- spa Typing (S.aureus)

Data Integration

Multiple sources of data

- Isolate Data :
 - Host clinical data
 - Host demographic data
 - Typing methods data
 - Sequences -> Alleles
 - Data linked to some temporal definition. Ex: MICs
 - Categorical Data
 - Etc...

Old Toys, Old Problems... New Toys, New Solutions, New Problems... Past and Present... RDBMS (Relational DataBase Management Systems)

	Exc	el:	tł		e mc	ost (w	ro	ne	٤V)				
							ST	aroe	adh	aki	recP	spi	cot	ddl
								1	1	1	1	1 1	1	1
						_		2	1	1	4	1 18	13	18
) –	\prec		<u>-</u>		3	1	5	1	B 14	11	14
				<u></u>				4 5	1	5	2 2	1 1	1	51
id	strain	other_name		st	country	region		6	1	5	2 1	1 9	3	49
1	NCTC11906-19F	NCTC11906		- 1 50	UK South Africa		-	7	1	5	4	1 5	1	8
2	P.123/1	P.123		300	South Amca Sweden			в	1	5	4	5 17	1	8
4	SP264-23F	264		81	Spain			9	1	5	4	5 5	1	8
5	87-029044-14	87-029044		20	Slovakia		10	0	1	5	4	5 9	1	10
6	SP3026-6B	3026		90	Spain		1	1	1	5	4	5 10	1	8
7	UK577-23F	DN87/577		81	UK		1:	2	1	5	4	4 9	3	16
8	ATCC6323-23	ATCC6323		108	USA		1.	3	1	5	4	5 5	27	8
9	CS111-23F	CS111 CM70		37	USA		14	4 5	1	5	4	5 5	3	14
11	GA71-19E	GA71		81	Spain		10	8	1	5	4 1	2 5	27	8
12	GM169-19F	GM169		86	Spain		13	7	1	5	4 1	1 9	3	47
13	GM17-6B	GM17		90	Spain		18	B	1	5	4 1	1 9	3	16
14	KD18-23	100520		150	Kenya		19	9	1	5	4 1	8 9	3	16
15	KD6-19			107	Kenya		20	D	1	5	4	1 5	3	3
16	PN13-14	Kaguane/73		10	Papua New Guinea		2	1	1	5	4 1	1 9	3	4
1/	PN16-42	110K/70		-117	Papua New Guinea		- 22	2	1	5	4 1	1 9	43	52
10	PN20-19	78249		68	South Africa		- 23	3	1	5	4	5 35	3	8
20	PN29-15	4865		194	Australia		- 24	4	1	5	4	5 5	1	24
21	R6	R6		128	USA		- 25	5	1	5	4	1 5	3	8
22	SP665-9V	SP665		156	Spain		20	7	1	5	/ 1	2 20	1	14
23	VH14-14	VH14		12	Spain		20	8	1	5	9	1 0	14	6
24	M1-7F	B4-831		203	Sweden		- 29	9	1	5 1	0	5 5	3	8
25	M2-4	B4-1021		205	Sweden		- 30	0	1	5 2	7 2	0 1	1	1
20	Ma-14	B4-0020 B4-8660		124	Sweden		3	1	1	5 3	1	5 5	3	8
28	M5-4	B4-8067		205	Sweden		32	2	1	6	4	5 15	1	20
29	M6-4	B4-9708		205	Sweden		33	3	1	8	1	2 6	4	6
30	M7-6B	B4-7681 id	seque	ence	ength								4	6
31	M8-9N	B4-743	1 GAAG	GCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	SCATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	4	6
32	M9-18C	B4-8250	2 GAAG	CGAC	GACTIGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	CATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	4	6
33	M10-14	B4-4168	5 GAAC	SCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	SCATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	4	6
34	M11-14	11L1180	6 GAAG	GCGAC	TGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	GCATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	4	6
35	M12-14	0110280	7 GAAG	GCGAC	TGACTTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATO	CTGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT	4	6
			8 GAAG	SCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	GCATCAAT(CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	1 4	6
			9 GAAG	GCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	SCATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	1	12
			10 GAA0	GCGAC	STGACTTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATO	CTGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT	4	0
			11 GAAG	CGAC	TGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAAT	TGTCCATG	COLLATAAG	GAGCAGGT	GATTCCTTATT	7	0
			13 GAAG	SCGAC	TGACTTGGTAGAAACAG	IGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATC	CTGTCCATG	CCTATAAG	GAGCAGGT	SATTCCTTATT	1	
			14 GAAG	GCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	SCATCAAT	CTGTCCATG	CCTTATAAG	GAGCAGGT	GATTCCTTATT		
			15 GAAG	GCGAC	STGACTTGGCAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGC	CATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT	T	
			16 GAAC	GCGAC	GTGACTTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATO	CTGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT	r	
			17 GAAC	GCGAC	STGACCTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAAT	CTGTCCATG	CCCTATAAG	GAGCAGGT	GATTCCTTATT		
			18 GAAG	SCGA(I GAUTTGGCAGAAACAG	TEGCCAATATTCGTCGCTACCA	GATGTTTGC	SCATCAAT(UTGTCCATG	COTATAAG	GAGCAGGT	GATTCCTTATT		
			20 GAAG	SCGAC	STGACTTGGCAGAAACAG	TIGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATC	TGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT		
			21 GAAC	GCGAC	STGACTTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATC	TGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT		
			22 GAAG	GCGAC	GTGACTTGGTAGAAACAG	TGGCCAATATTCGTCGCTACCA	GATGTTTGG	CATCAATO	CTGTCCATG	CCTATAAG	GAGCAGGT	GATTCCTTATT		

Data Analysis

MLST Model

More similar STs should denote closely related strains from an evolutionary point of view.

STs with more SLVs can be regarded has a common ancestor.

Links between STs depict descent relations.

With these assumptions, connected STs should share an evolutionary path.

goeBURST

Implements the evolutionary module using the following rules:

- the ST with the most SLVs connects to all its SLVs
- Repeat this procedure
 - In case of ties, use DLVs / TLVs / ST frequency and ST IDs as tie-breaker
- Proceed until all available STs have been assigned to a clonal complex or are singletons

Phyloviz Live Demo

Ongoing work: Phyloviz

The future of microbial typing

- Full genome sequencing + Comparative genomics: The solution?
 - Difficulties assembling the high-throughput reads / complete coverage
 - core genome vs. accessory genome
- Online databases : need for much better annotation and curation , and methods to submit, validate, retrieve and visualize the data

Concluding Remarks

"All models are wrong, Some are useful" – George Box

Data analysis methods can skew the view: we simply need to know how much before drawing the conclusions

Need for novel data analysis methodologies that take recombination and mutation into consideration

Large scale population simulations can lead to new conclusions on how recombination and mutation shape the bacterial populations, and can provide the validation model for new methods.